
November 2009 FoxRockX Page 13

Every procedural programming language I used
before FoxBase+ offered arrays as a way to hold an
ordered collection of information. So when I started
learning FoxBase+, its arrays made sense to me. In
fact, the very first article I ever published in a Fox
journal was about arrays.
Fox's arrays were different than those I'd used be-
fore in a couple of ways. First, most of the languages
I'd worked with offered arrays of unlimited dimen-
sions. FoxBase+ handled only one-dimensional and
two-dimensional arrays, as is still true for VFP. Al-
though this felt like a significant limit, I learned to
work around it.

Second, the languages I'd used earlier were
strongly typed, so every element of an array had to
contain data of the same type. Fox is weakly typed
and doesn't have this requirement. This made ar-
rays very handy for storing copies of records, as
well as other record-type information (for example,
the file information returned by ADIR()).

Over the years, the functionality for working
with arrays improved a lot. A group of functions
was added long ago to make it easier to manipu-
late arrays; they include ASCAN() and ASORT() to
search and sort, ACOPY() to copy all or part of an
array, and AINS() and ADEL() to add and remove
data in the middle of an array.

In addition, VFP has acquired many functions
that retrieve some information and store it in an ar-
ray. For example, AFIELDS() puts the list of fields
for a table into an array, APRINTERS() fills an ar-
ray with the list of available printers, and AMEM-
BERS() retrieves the list of properties, events and
methods for an object and stores that in an array.
There are also commands to move table data direct-
ly into and out of arrays. (For detailed information
about working with arrays, and the array functions,
see http://www.tomorrowssolutionsllc.com/Ma-
terials/arrays.html.)

With all these capabilities, arrays have been a
valuable member of the VFP arsenal. However, the
addition of a collection base class in VFP 8 offers an
alternative way to handle some groups of data. In
particular, collections are a much more natural way
than arrays to manage groups of related objects.

What is a collection?
A collection is a container for zero or more items.
While the items can be scalar pieces of data (such
as a string or a number), more often collections are
used to contain a group of objects.

In VFP (and most other languages), a collec-
tion has a Count property that tells you how many
items are in the collection and an Item method that
provides access to the individual members.

Collections are naturally unordered, though
VFP provides an ordered way to access their mem-
bers. However, as members of the collection are
added and removed, the position of an item can
change.

Unlike VFP's arrays, collections handle the pos-
sibility of zero items with no problems. In that case,
the collection's Count is 0.

COM Collections in VFP
Although the Collection base class was added in
VFP 8, VFP has had tools for working with col-
lections for much longer. Most Automation serv-
ers have lots of collections to represent the objects
they deal with. For example, Microsoft Word has
a Documents collection; its Document object has
a Paragraphs collection. Microsoft Excel offers a
Workbooks collection; each Workbook has a Work-
sheets collection, containing the individual sheets
in the workbook. It's rare to encounter an Automa-
tion server that doesn't include at least a few collec-
tions in its object model.

VFP has been able to access and work with col-
lections from Automation servers since VFP 3. VFP
5 added the FOR EACH loop construct to make tra-
versing a collection easier.

In addition to the collections from other Auto-
mation servers, VFP has several collections that be-
long to its own automation server. For example, the
Projects collection was added in VFP 5 to provide
access to all open projects. Project objects contain a
Files collection with one member for each file in the
project. The container classes in VFP (Form, Page,
Grid, etc.) have an Objects property that points to a
collection containing all the contained objects. Like
Projects and Files, Objects is a COM collection, not
an object native to VFP.

Collections instead of Arrays
The Collection class provides an easy way to work with
groups of objects.

Tamar E. Granor, Ph.D.

Page 14 FoxRockX November 2009

Collections of our own
It took until VFP 8 for us to get the ability to cre-
ate our own collections. As noted above, they have
a Count property and an Item method. They also
include Add and Remove methods that let you add
items to the collection and remove them from the
collection. Not surprisingly, when you call Add to
add an item, Count goes up. When you call Remove
to remove an item, Count goes down.

VFP's collections also allow you to specify a key
for each item. That is, you can associate a unique
identifier with each member of a collection. Once
you do so, you can actually access that item using
its key.

To create a collection, you use CreateObject() as
you would for any other class. Then, to add mem-
bers, you call the collection's Add method, passing
the item to add and, optionally, the key for that
item. Listing 1 shows code to create a collection
of strings representing the names of the first five
states alphabetically. The state's postal abbrevia-
tion is used as the key for the item. Each item can
be accessed by its position (index) in the list or by
its key, as the last two lines show.
Listing 1. This code fragment creates a collection and adds the
names of the first five US states. The postal abbreviation for
each state is used as its key.
LOCAL oStates

oStates = CREATEOBJECT("Collection")
oStates.Add("Alabama", "AL")
oStates.Add("Alaska", "AK")
oStates.Add("Arizona", "AZ")
oStates.Add("Arkansas", "AR")
oStates.Add("California", "CA")

?oStates.Item[3]
?oStates.Item["AZ"]

In fact, in most cases, you can omit the Item
keyword, as well, and just specify the index or key
right after the collection name, as in Listing 2.
Listing 2. The Item keyword is usually optional.
?oStates[4]
?oStates["AR"]

Although collections can be used for scalar
data as above, where they really shine is in work-
ing with objects. A collection can hold a group of
related objects and provide easy access to them. We
see this with the built-in collections like the Objects
collection of container classes, and it's just as useful
for your own objects.

For example, rather than just adding the state
names to a collection, we might add state objects
that contain the name, the abbreviation, the order
in which the state joined the union, and the popula-
tion at the last census. We can still set the abbrevia-
tion as the key. In an application, I'd probably cre-
ate a State class, and offer a mechanism for creating
and populating the objects. For this example, I'll do
it by brute force. Listing 3 shows the code to create

and populate two state objects and add them to a
collection. As with scalars, you can access a mem-
ber of a collection either by its index or by its key,
and the Item keyword is optional. However, when
a member of a collection is an object, you can then
access its individual properties (and methods).
Listing 3. Collections are particularly useful for holding groups
of objects.
LOCAL oStates, oState

oStates = CREATEOBJECT("Collection")

* Create and add a state
oState = CREATEOBJECT("Empty")
ADDPROPERTY(oState, "cName", "Alabama")
ADDPROPERTY(oState, "cAbbrev", "AL")
ADDPROPERTY(oState, "nOrder", 22)
ADDPROPERTY(oState, "nPopulation", 4447100)

oStates.Add(oState, oState.cAbbrev)

oState = CREATEOBJECT("Empty")
ADDPROPERTY(oState, "cName", "Alaska")
ADDPROPERTY(oState, "cAbbrev", "AK")
ADDPROPERTY(oState, "nOrder", 49)
ADDPROPERTY(oState, "nPopulation", 626932)

oStates.Add(oState, oState.cAbbrev)

* Now use it
?oStates[2].cName
?oStates["AK"].nOrder

Why collections?
When looking at the example in Listing 3, you may
wonder why you should use a collection rather
than an array. There are several reasons.

Access items by key
We've already seen the first reason, the ability to
access members of a collection by their key instead
of by their position. This can make code both more
concise (since you don't have to go looking for the
right item) and more clear (since the key in the code
tells you exactly which item you're talking to).

Deal with no items
I also mentioned a second reason earlier. Collec-
tions handle the state of being empty very natural-
ly. VFP's arrays can't be empty; they always have
at least one element. So testing whether you have
data requires either maintaining a separate counter
variable or having a way to test whether the first el-
ement of the array is valid. Listing 4 shows the test
for an empty collection, and the more complex test
for an empty array. In this example, the array test
is that there's only one element and that element is
empty. In other situations, you might need to test
for a particular value or a particular data type.
Listing 4. Handling an empty collection is much easier than
handling an empty array.
* To check whether a collection is empty,
* just look at its Count.
IF oCollection.Count = 0
 * Collection is empty. Act accordingly.
ENDIF

November 2009 FoxRockX Page 15

* To check whether an array is empty,
* you have to know what constitutes an empty
* element. The exact test varies with the way
* the array is being used. In this case,
* we consider the array empty if there's only
* one element and it's empty. Sometimes,
* you need to test for a specified value
* or type.
IF ALEN(aArray, 1) = 1 AND ;
 EMPTY(aArray[1])
 * The array is empty. Act accordingly.
ENDIF

Add and remove items
Adding and removing items from a collection is
easier than with arrays as well. To add an item to an
array, you have resize the array with DIMENSION,
create a space where you want it with AINS(), and
insert the data. With a collection, you just use the
Add method.
Listing 5. Adding a row to an array is a three-step process.
LOCAL aArray[4]

* Populate it
aArray[1] = "A"
aArray[2] = "B"
aArray[3] = "C"
aArray[4] = "D"

* Add a row in the third position
LOCAL nRows
nRows = ALEN(aArray, 1)
DIMENSION aArray[m.nRows + 1]
AINS(aArray, 3)

aArray[3] = "Inserted"
DISPLAY MEMORY LIKE aArray

Removing is similar. With an array, you have
to use ADEL() to move data around, and then
DIMENSION to resize the array. For a collection,
you just call Remove.

While all those steps aren't too onerous for a
one-dimensional array, with a two-dimensional ar-
ray, it's more complex (particularly, if you want to
add or remove a column).

Build hierarchies
If you need to deal with hierarchical objects, col-
lections offer a clear benefit. You can walk down
a hierarchy without having to use intermediate
variables. Listing 6 shows the construction of a col-
lection of countries. Each country contains two col-
lections, a scalar list of languages, and a collection
of state objects. (Once again, this is not the way I
would build these objects in an application. How-
ever, creating everything on the fly is simpler for an
example like this.)
Listing 6. When you're working with hierarchical objects, col-
lections make drilling down much easier than with arrays.
LOCAL oCountries, oCountry
LOCAL oStateProv, oStatesProvs

oCountries = CREATEOBJECT("Collection")

* Add the USA
oCountry = CREATEOBJECT("Empty")
ADDPROPERTY(oCountry, "cName", ;
 "United States of America")

ADDPROPERTY(oCountry, "cContinent", ;
 "North America")
ADDPROPERTY(oCountry, "oLanguages", ;
 CREATEOBJECT("Collection"))
oCountry.oLanguages.Add("English")

* Create a collection of its states/provinces
oStatesProvs = CREATEOBJECT("Collection")

oStateProv = CREATEOBJECT("Empty")
ADDPROPERTY(oStateProv, "cName", "Alabama")
ADDPROPERTY(oStateProv, "cAbbrev", "AL")

oStatesProvs.Add(m.oStateProv, ;
 m.oStateProv.cAbbrev)

oStateProv = CREATEOBJECT("Empty")
ADDPROPERTY(oStateProv, "cName", "Alaska")
ADDPROPERTY(oStateProv, "cAbbrev", "AK")

oStatesProvs.Add(m.oStateProv, ;
 m.oStateProv.cAbbrev)

* Etc. for the others

* Add the collection of states to the
* country object
ADDPROPERTY(oCountry, "oStatesProvs", ;
 m.oStatesProvs)

* Now add this country to the collection
oCountries.Add(m.oCountry, oCountry.cName)

* Add Canada
oCountry = CREATEOBJECT("Empty")
ADDPROPERTY(oCountry, "cName", "Canada")
ADDPROPERTY(oCountry, "cContinent", ;
 "North America")
ADDPROPERTY(oCountry, "oLanguages", ;
 CREATEOBJECT("Collection"))
oCountry.oLanguages.Add("English")
oCountry.oLanguages.Add("French")

* Create a collection of its states/provinces
oStatesProvs = CREATEOBJECT("Collection")

oStateProv = CREATEOBJECT("Empty")
ADDPROPERTY(oStateProv, "cName", "Ontario")
ADDPROPERTY(oStateProv, "cAbbrev", "ON")

oStatesProvs.Add(m.oStateProv, ;
 m.oStateProv.cAbbrev)

oStateProv = CREATEOBJECT("Empty")
ADDPROPERTY(oStateProv, "cName", "Quebec")
ADDPROPERTY(oStateProv, "cAbbrev", "PQ")

oStatesProvs.Add(m.oStateProv, ;
 m.oStateProv.cAbbrev)

* Etc. for the others

* Add the collection of provinces to the
* country object
ADDPROPERTY(oCountry, "oStatesProvs", ;
 m.oStatesProvs)

* Now add this country to the collection
oCountries.Add(m.oCountry, oCountry.cName)

* Now dig in and get some information
?oCountries["Canada"].oLanguages[1]
?oCountries["Canada"].oStatesProvs[2].cName
?oCountries["Canada"].oLanguages.Count

I use collections extensively in creating busi-
ness objects for my applications. For that purpose,
the ease of constructing and addressing hierarchies
is critical.

Page 16 FoxRockX November 2009

Provide COM access
Finally, collections make sense if there's any chance
that the code you're writing might need to be
used from outside the application. That is, if you
might end up creating a COM server, using collec-
tions will make it easier for the developers calling
on your code, since it will behave like other COM
server applications.

Working with collections
Collections have a few other capabilities worth
knowing about. The GetKey method gives you an
easy way to switch between the index and the key
of any element. If you pass a numeric value, it re-
turns the key for the item with that index; if you
pass a string, it returns the index for the item with
that key. Listing 7 demonstrates, using the collec-
tion of countries constructed in Listing 6.
Listing 7. The collection class's GetKey method switches be-
tween indexes and keys.
?oCountries.GetKey("Canada") && returns 2
?oCountries.GetKey(1)
 && returns "United States of America"

You can use this ability to avoid errors. If you
refer to a member of a collection that doesn't exist,
you get an error (error 2061). If you have the key for
an item and you want to make sure the item exists,
you can use code like Listing 8 to handle it.
Listing 8. GetKey can be part of a strategy to avoid errors
when accessing collection members.
nIndex = oCountries.GetKey("France")
IF m.nIndex > 0
 oFrance = oCountries["France"]
ELSE
 oFrance = .null.
ENDIF

In my older business object code, I have a lot of
methods that look more or less like that. My newer
code simply wraps the access in TRY-CATCH, as
in Listing 9.
Listing 9. TRY-CATCH offers another way to avoid errors when
addressing collection members by their keys.
TRY
 oFrance = oCountries["France"]
CATCH
 oFrance = .null.
ENDTRY

Sometimes, you need to traverse an entire col-
lection. You have two options, a regular FOR loop
and a FOR EACH loop. With the regular FOR loop,
you can use the collection's Count property to set
the limit. FOR EACH lets you go through a collec-
tion without counting. You're guaranteed to touch
each item along the way. The order of traversal is
based on the collection's KeySort property. With
the default setting of 0, you go in ascending index
order. The other settings let you go in descending
index order, and in ascending or descending key
order.

When FOR EACH was added in VFP 5, there
were no native collections. So it was designed to
address COM objects. As a result, each object it
creates is a COM object. After native collections
were added in VFP 8, it became apparent that
turning native objects into COM objects this way
caused a number of problems. So VFP 9 adds the
FOXOBJECT keyword, which tells FOR EACH
to create native objects rather than COM objects.
Listing 10 demonstrates.
Listing 10. Use FOR EACH to walk through a collection and
access every item. Make sure to add the FOXOBJECT key-
word when working with native VFP objects.
FOR EACH oCountry IN m.oCountries FOXOBJECT
 ?oCountry.cName, oCountry.cContinent
ENDFOR

There is one case where you must use a regu-
lar FOR loop rather than FOR EACH. That's when
you're removing items from the collection as you
go. In that case, you need to use a FOR loop that's
counting backwards from the end of the collection.

There is one big negative to working with col-
lections. The VFP Debugger does not provide good
tools. You can't drill down into a collection in the
either the Locals or the Watch window, though you
can see the Count. In order to look at a particular
item, you either have to enter a path to it into the
Watch window, or save it to a variable and then ex-
amine that in the Locals window.

Give collections a try
The more I work with collections, the more uses I
find for them. In addition to using them in business
objects, I use them to pass data around within an
application, to hold lists of things that need to be
done, and lots of other ways.

Like so much in VFP, you may find collections
a little strange when you get started, but over time,
I think they'll grow on you.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses and
other organizations. She currently focuses on working with
other developers through consulting and subcontracting.
Tamar is author or co-author of ten books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and
Taming Visual FoxPro’s SQL . Her latest collaboration
is Making Sense of Sedna and SP2, coming out this year.
Her books are available from Hentzenwerke Publishing
(www.hentzenwerke.com). Tamar is a Microsoft Support
Most Valuable Professional. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement Award.
You can reach her at tamar@thegranors.com or through
www.tomorrowssolutionsllc.com

